

ARITHMETIC PROGRESSIONS

- N.Mahathi, X-A

CONTENTS

- Types of Progressions and their applications

Arithmetic Progressions
Common difference of an A.P.
General form of an A.P.
The 'n'th term of an A.P.
Sum of the first ' n ' terms of an A.P

- Arithmetic Mean
> Summary

TYPES OF PROGRESSIONS AND THEIR APPLICATIONS

1. Arithmetic Progressions -

When we travel by an auto or a taxi we are first charged at a fixed amount to which for every additional kilometre we are charged an extra amount. So as the fixed fare we may first pay, say ₹12 and for every additional kilometre we pay say ₹5, as a result the payment rate after every km is an A.P. i.e, $12,17,22,27,32 \ldots .$.
2. Geometric Progressions -

A single bacteria divides into 2 every second. The sequence of the number of bacteria at every second forms a G.P. i.e., $1,2,4,8,16$, 32,...... (powers of 2)
3. Harmonic Progressions-

These progressions are used in the designing of musical instruments and are not very simple. The reciprocals of the terms of a H.P are in A.P. An example is $1,1 / 4,1 / 7,1 / 10, \ldots \ldots . .$.

ARITHMETIC PROGRESSIONS

> Consider the following sequences

- 1, 2, 3, 4 ,

2, 2, 2, 2,
100, 70, 40, 10, -20,......
> Each of the numbers in each sequence is called a term.
> The difference between any 2 consecutive terms in each sequence is a constant.
> These are the properties of an A.P. i.e.,An A.P is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.

COMMON DIFFERENCE OF AN A.P.

- The fixed number that is added to every term to obtain its succeeding term is called the common difference of the A.P.
> This is represented by d.
> The common difference can be positive, negative or zero.
> $d=a_{n}-a_{n-1}$

GENERAL FORM OF AN A.P.

$>a, a+d, a+2 d, a+3 d, a+4 d, \ldots \ldots \ldots .$. is called the general form of Arithmetic Progressions.

FINITE AND INFINITE A.P.

> Progressions containing only a finite number of terms is called a finite A.P.
> Progressions that do not have an finite number of terms is called an infinite A.P.

'N'TH TERM OF AN A.P.

> 1st term of $\mathrm{A} . \mathrm{P}=\mathrm{a}$
> 2nd term of A.P=a+d
> 3rd term of $A . P=a+2 d$
> 4th term of $A . P=a+3 d$
>and so on...
> By now you would have noticed that the coefficient of d is 1 less than the number of the term in the sequence.
> Therefore the general formula for the 'n'th term, $a_{n}=a+$ ($\mathrm{n}-1$) d

SUM OF THE FIRST 'N' TERMS OF AN A.P.

> The sum of the first ' n ' terms of an A.P is denoted by S.
> $S_{n}=[n\{2 a+(n-1) d\}] / 2$ and it is also equal to $S_{n}=[n(a+I)] / 2$, where I is is the ' n 'th term of the A.P.

ARITHMETIC MEAN

> If a, b, c are in A.P, then $b=(a+c) / 2$.
> b is the arithmetic mean(commonly known as average)of a and c.

SUMMARY

> An A.P is a list of numbers obtained by adding a fixed number d to the preceding term, except the first term. The number d is called the common difference.
> General form of an A.P : a, a+d, a+2d, a+3d, a+4d,..........
> In an A.P, the value of d is given by $a_{k+1}-a_{k}$
> The ' n ' term in the A.P, $a_{n}=a+(n-1) d$, where a is the first term, d is the common difference.
> The sum of the first ' n ' terms of the A.P, $S_{n}=[n\{2 a+(n-$ $1) d\}] / 2$. It is also equal to $[n(a+1)] / 2$

