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1 Magnetic Monopoles
We know of the existence of two kinds of electric charges: positive and negative. Sim-
ilarly, we observe the existence of two types of magnetic poles: the north and south
poles. However, these poles appear to always occur in pairs and for instance an at-
tempt in cutting a bar magnet into two always results in two dipoles with parallel
orientations instead of a single pole. There are as of present, no known occurrences
nor processes to obtain independent magnetic poles, that is, magnetic monopoles or
magnetic charges. However, the existence magnetic monopoles or magnetic charges is
supported by the Superstring Theory and the Grand Unified Theory and should they
exist, they would explain why electric charge is quantized and would also make the
Maxwell’s equations symmetric.

2 Maxwell’s Equations
The Maxwell’s equations, which describe the influence of Electric and Magnetic fields
on each other, are given by:

∇·E= ρ

ϵ0
(Gauss’s Law) (2.1)

∇·B= 0 (Gauss’s Law [Magnetism]) (2.2)

∇×E=−∂B
∂ t

(2.3)

∇×B=µ0J+ϵ0µ0
∂E
∂ t

(Ampere-Maxwell’s Law) (2.4)

2.1 Gauss’s Law derivation
From Coulomb’s Law we know that the electric field due to stationary electric charge
qe at a distance r is given by:

E(r)= 1
4πϵ0

qer̂
r2 (2.5)

The net electric field at r infinitesimal charges at each point represented by s is given
by:

E(r)= 1
4πϵ0

Ñ
V

ρe(s)(r−s)
|r−s|3 d3s (2.6)

Now, evaluating the gradient on both sides, we have:

∇·E(r)=∇· 1
4πϵ0

Ñ
V

ρe(s)(r−s)
|r−s|3 d3s = 1

4πϵ0

Ñ
V
∇· ρe(s)(r−s)

|r−s|3 d3s (2.7)

Using the property of the three-dimensional Dirac Delta function which states
that ∇· r̂

r2 = 4πδ3(r) we have:

∇·E(r)= 1
ϵ0

Ñ
V
ρe(s)δ3(r−s)d3s (2.8)

The sifting property of the integral of a time-delayed Dirac Delta function f by a T is
given by: ∫

f (t)δ(t−T)dt = f (T) (2.9)
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Applying this sifting property we have :

∇·E(r)= ρe(r)
ϵ0

(2.10)

The Gauss Law signifies that the net flux of the electric field linked through a
closed surface is equal to the total charge enclosed by the closed surface.The equation
also supports the existence of positive and negative electric charges as the positive
charges act as the source of flux of the electric field and the negative charges act as
the sink of flux of the electric field.

2.2 Gauss’s Law for Magnetism derivation
We know that the movement of electric charges induces magnetic fields. Let us make
the assumption that all magnetic fields are a result of moving electric charges. By
Biot-Savart’s Law we know that the magnetic field due to a current I through a length
dl at a distance r and a distance r′ to the infinitesimal element dl is given by:

B(r)= µ0I
4π

∫
dl× (r−r′)
|r−r′|3 (2.11)

Evaluating the gradient on both sides we obtain:

∇·B(r)= µ0I
4π

∫
∇· dl× (r−r′)

|r−r′|3 (2.12)

= |r−r′|3∇· [dl× (r−r′)]−∇[|r−r′|3] · [dl× (r−r′)]
|r−r′|6 (2.13)

The Gauss Law for Magnetism suggests that the flux of magnetic induction across
any closed surface is always zero. This supports experimental results that show that
the number of magnetic field lines entering any arbitrary closed surface is equal to
number of magnetic field lines leaving it. Thus, by suggesting that magnetic flux
lines are always closed loops implies that there are no sink or sources in the case of
magnetic flux. It therefore, does not allow the existence of magnetic monopoles and
establishes that magnetic poles always occur in pairs as dipoles.

2.3 Maxwell’s Third equation derivation
From Faraday’s law of electromagnetic induction, we know that the induced electro-
motive force(EMF) in a loop is equal to the rate of change of magnetic flux linkage.
This is otherwise written as:

ε=−dφB

d t
(2.14)

We also know that the flux is given by:

φB =
∫

S
B ·ds (2.15)

From equations 2.14 and 2.15 we obtain:

ε=− d
d t

∫
S

B ·ds (2.16)

=−
∫

S

∂B
∂ t

·ds (2.17)

3



Since the EMF by definition is the work done in carrying a unit charge around a
closed loop in an electric field the EMF can also be written as:

ε=
∫

C
Edl (2.18)

From equations 2.17 and 2.18 we have:∫
C

Edl =−
∫

S

∂B
∂ t

·ds (2.19)

From Stokes Theorem we know that:∫
C

Edl =
∫

S
(∇×E)ds (2.20)

Applying Stokes Theorem to the Left-hand side of equation 2.19:∫
S

(∇×E)ds =−
∫

S

∂B
∂ t

ds (2.21)

⇒
∫

S

[
(∇×E)+ ∂B

∂ t

]
ds= 0 (2.22)

Since the solution to the above equation must be true for all surfaces we have:

∇×E=−∂B
∂ t

(2.23)

2.4 Ampère’s law with Maxwell’s addition derivation

2.5 Maxwell’s Equations in Free Space
In free space, the charge density, ρ = 0 and consequently current density, J = ρE = 0.
Additionally ϵ= ϵ0 and µ= µ0. Substituting these values in equations 2.1-2.4 results
in the following Maxwells equations in free space:

∇.E= 0 ∇.B= 0 ∇×E=−∂B
∂ t

∇×B= ϵ0µ0
∂E
∂ t

(2.24)

There is a striking symmetry that can be noted from above in the Maxwell’s equa-
tions in free space where on replacement of E with B and B with −ϵ0µ0E the equations
remain unchanged.

2.6 Restoring Dual Symmetry of Maxwell’s Equations
Now, in order to retain this symmetry in the general forms of the Maxwell’s Equations
let us assume that magnetic charges exist. We define ρm to be the charge density of
magnetic charges and ρe to the charge density of electric charges. We also define the

magnetic current density and electric current density to be given by ∇.Jm = −∂ρm

∂ t
and ∇.Je =−∂ρe

∂ t
respectively. Incorporating these and applying the Law of Universal

Magnetism, the modified Maxwell’s equations given by:

∇.E= ρe

ϵ0
(2.25)

∇.B=µ0ρm (2.26)
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∇×E=−µ0Jm − ∂B
∂ t

(2.27)

∇×B=µ0Je +ϵ0µ0
∂E
∂ t

(2.28)

It can be noted how the above equations are invariant under the exchange of elec-
tric and magnetic field components, thus showing that the existence of magnetic
monopoles would restore the dual symmetry noted in free space.

2.7 Deriving Gauss’s Law for Magnetism with Magnetic Monopoles
In the derivation of Gauss’s Law for Magnetism earlier, we made the assumption
that the only Magnetic field is due to the field induced by moving electric charges.
However, taking the possibility of the existence of magnetic monopoles or magnetic
charges gives us a new potential source of magnetic fields. The Universal Law of
Magnetism[1] states that the magnetic field due to a magnetic charge qm at a distance
r is given by:

B= µqmr̂
4πr2 (2.29)

The net magnetic field at r from infinitesimal charges at each point s of a charge
distribution is given by:

B(r)= µ

4π

Ñ
V

ρm(s)(r−s)
|r−s|3 d3s (2.30)

This is analogous to the derivation of the Gauss’s Law from Section 2.1. Now, evalu-
ating the gradient on both sides, we have:

∇·B(r)=∇· µ
4π

Ñ
V

ρm(s)(r−s)
|r−s|3 d3s = µ

4π

Ñ
V
∇· ρm(s)(r−s)

|r−s|3 d3s (2.31)

Using the property of the three-dimensional Dirac Delta function which states
that ∇· r̂

r2 = 4πδ3(r) we have:

∇·B(r)=µ

Ñ
V
ρm(s)δ3(r−s)d3s (2.32)

The sifting property of the integral of a time-delayed Dirac Delta function f by a T is
given by: ∫

f (t)δ(t−T)dt = f (T) (2.33)

Applying this sifting property we have :

∇·B(r)=µρm(r) (2.34)
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3 Dirac’s quantization of electric charges

3.1 Aharanov-Bohm Effect

3.2 Heuristic Approach using Angular Momentum of due to an
electric charge and magentic charge

4 Groundwork theory

4.1 Mathematics
4.1.1 Dirac-delta Function

4.2 Lagrangian Mechanics

4.3 Relativity
4.3.1 Inertial Reference Frame

An inertial reference frame is a reference frame in which Newton’s Laws hold. It is
characterised as an non-accelerated reference frame. This means that if there exists
a body with no net external force acting on it, the motion of the body will be non-
accelerated as observed from this reference frame. All motion is said to be relative,
and hence, there exists no absolute reference frame in this universe.

4.3.2 Newtonian Relativity

4.3.3 Special Relativity

Newtonian mechanics proposes no theoretical limit to the velocity of a particle. How-
ever, experimental evidence shows that predictions based on Newtonian Mechanics
do not hold ground for speeds that approach the speed of light. In order to understand
this and also gain further insight into the nature of electromagnetism, Einstein re-
visited the foundations of Newtonian Mechanics, namely the notion of space/distance
and time.

4.4 Electrodynamics

4.5 Quantum Mechanics
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